Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 2: 396, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31701025

RESUMEN

Habitat degradation and hunting have caused the widespread loss of larger vertebrate species (defaunation) from tropical biodiversity hotspots. However, these defaunation drivers impact vertebrate biodiversity in different ways and, therefore, require different conservation interventions. We conducted landscape-scale camera-trap surveys across six study sites in Southeast Asia to assess how moderate degradation and intensive, indiscriminate hunting differentially impact tropical terrestrial mammals and birds. We found that functional extinction rates were higher in hunted compared to degraded sites. Species found in both sites had lower occupancies in the hunted sites. Canopy closure was the main predictor of occurrence in the degraded sites, while village density primarily influenced occurrence in the hunted sites. Our findings suggest that intensive, indiscriminate hunting may be a more immediate threat than moderate habitat degradation for tropical faunal communities, and that conservation stakeholders should focus as much on overhunting as on habitat conservation to address the defaunation crisis.


Asunto(s)
Biodiversidad , Clima Tropical , Animales , Asia Sudoriental , Teorema de Bayes , Aves , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Ecosistema , Extinción Biológica , Mamíferos , Dinámica Poblacional/estadística & datos numéricos , Dinámica Poblacional/tendencias , Especificidad de la Especie
2.
Sci Adv ; 1(5): e1400175, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26601191

RESUMEN

Although significantly more money is spent on the conservation of tigers than on any other threatened species, today only 3200 to 3600 tigers roam the forests of Asia, occupying only 7% of their historical range. Despite the global significance of and interest in tiger conservation, global approaches to plan tiger recovery are partly impeded by the lack of a consensus on the number of tiger subspecies or management units, because a comprehensive analysis of tiger variation is lacking. We analyzed variation among all nine putative tiger subspecies, using extensive data sets of several traits [morphological (craniodental and pelage), ecological, molecular]. Our analyses revealed little variation and large overlaps in each trait among putative subspecies, and molecular data showed extremely low diversity because of a severe Late Pleistocene population decline. Our results support recognition of only two subspecies: the Sunda tiger, Panthera tigris sondaica, and the continental tiger, Panthera tigris tigris, which consists of two (northern and southern) management units. Conservation management programs, such as captive breeding, reintroduction initiatives, or trans-boundary projects, rely on a durable, consistent characterization of subspecies as taxonomic units, defined by robust multiple lines of scientific evidence rather than single traits or ad hoc descriptions of one or few specimens. Our multiple-trait data set supports a fundamental rethinking of the conventional tiger taxonomy paradigm, which will have profound implications for the management of in situ and ex situ tiger populations and boost conservation efforts by facilitating a pragmatic approach to tiger conservation management worldwide.

3.
Sci Rep ; 5: 17041, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26596779

RESUMEN

In species-habitat association studies, both the type and spatial scale of habitat covariates need to match the ecology of the focal species. We assessed the potential of high-resolution satellite imagery for generating habitat covariates using camera-trapping data from Sabah, Malaysian Borneo, within an occupancy framework. We tested the predictive power of covariates generated from satellite imagery at different resolutions and extents (focal patch sizes, 10-500 m around sample points) on estimates of occupancy patterns of six small to medium sized mammal species/species groups. High-resolution land cover information had considerably more model support for small, patchily distributed habitat features, whereas it had no advantage for large, homogeneous habitat features. A comparison of different focal patch sizes including remote sensing data and an in-situ measure showed that patches with a 50-m radius had most support for the target species. Thus, high-resolution satellite imagery proved to be particularly useful in heterogeneous landscapes, and can be used as a surrogate for certain in-situ measures, reducing field effort in logistically challenging environments. Additionally, remote sensed data provide more flexibility in defining appropriate spatial scales, which we show to impact estimates of wildlife-habitat associations.


Asunto(s)
Bosques , Distribución Animal , Animales , Conservación de los Recursos Naturales , Macaca , Malasia , Densidad de Población , Imágenes Satelitales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...